Сопротивление материалов курс лекций

Расчетные формулы даны без выводов, но с необходимыми пояснениями, облегчающими их практическое применение.

Для стержня со ступенчатым изменением площади Ai нормальной силы Ni удлинения  вычисляются на каждом участке с постоянными Ni и Ai, а результаты алгебраически суммируются:

  (1.7).

Построение эпюр нормальных сил и напряжений для брусьев в статически определимых задачах.

Для определения внутренних усилий биваем брус с прямолинейной осью на четыре участка.

Эпюра нормальных сил показывает, что первый и четвертый участок подвержены растяжению, а второй и третий – сжатию.

Дан ямой стальной стержень кусочно - постоянного сечения, для которого a = 0,4 м, а площади поперечных сечений указаны на рис. 1.1.6, а.

Построить эпюру нормальных сил для стержня замоноличенного в массив (рис. 1.1.8, а), едполагая, что интенсивность сил трения постоянна по длине a.

Определить площади верхнего Ав0 и нижнего Ав1 сечений, а также вес  кладки из глиняного кирпича в форме бруса равного сопротивления сжатию, если на верхнее сечение действует сосредоточенная сила F = 3000 кН, высота стойки l = 20 м, R = 1,5 МПа; = 1,00.

Определить допускаемую нагрузку Fadm растягиваемого стального листа, ослабленного отверстиями d = 2 см.

Перемещения поперечных сечений брусьев в статически определимых задачах.

Определить еремещение нижнего конца стержня, изображенного на рис. 1.1.3, а. Необходимые для расчета данные взять из примера 1.1.3.

Алюминиевый стержень круглого поперечного сечения диаметром 10 см растягивается силой F. Найти величину допускаемой силы Fadm, если допускаемое уменьшение начального диаметра =0,002см; коэффициент Пуассона = 0,35.

Абсолютно жесткий брус АС прикреплен в точке А к неподвижному шарниру, а в точке В поддерживается стальным стержнем ВD.

Определить площади поперечных сечений стальных элементов АВ и СВ кронштейна, показанного на рис. 1.3.6, если F = 5 т, , ..

Статически неопределимыми системами называются системы, для которых еакции связей и внутренние усилия не могут быть определены только из уравнений равновесия.

Эпюра нормальных напряжений  показывает, что самое большое сжимающее нормальное напряжение будет в нижнем опорном сечении (КПа), а самое большое растягивающее напряжение – в верхнем опорном сечении (= 154,2 КПа).

Дан прямой стальной стержень кусочно-постоянного сечения, для которого а = 0,4 м, а площади поперечных сечений указаны на рис. 1.1.6, а. При учете действия только собственного веса стального стержня эпюры нормальных сил и напряжений имеют вид, показанный на рис. 1.1.6, б, в.

Определить нормальное напряжение в бетоне и арматуре железобетонной колонны, квадратное поперечное сечение которой показано на рис. 1.4.6, причем h = 30 см, модуль продольной упругости стали , а бетона тяжелого класса В 30 –

Если нижнюю опору не принимать во внимание и вычислить перемещение нижнего торца стержня  при учете сосредоточенной силы F и собственного веса стержня, то будем иметь

Стержень постоянного поперечного сечения заделан одним концом. Между нижним концом стержня и нижней жесткой опорой имеется зазор, равный  = 0,5 мм

Расчеты на растяжение и сжатие статически неопределимых стержневых систем.

Дана плоская шарнирно-стержневая система, состоящая из абсолютно жесткого бруса ВD, опертого на шарнирную опору О (рис. 1.5.2).

Влияние температуры на напряжение и деформации в брусьях.

Абсолютные удлинения крайних стержней возникают от продольной нормальной силы, а абсолютное удлинение среднего стержня равно сумме его температурного удлинения и упругой деформации от продольной силы ND.

Медный стержень с постоянной площадью поперечного сечения А = 10 см2 гружен сосредоточенными силами F = 1000 кг (рис.1.4.3) и нагрет на = 20о.

еометрические характеристики плоских сечений Геометрическими характеристиками плоских сечений являются площадь, статические моменты плоских сечений, положение центра тяжести, моменты инерции и моменты сопротивления.

. Изменение положительного направления оси у вызывает изменение знака статического момента Sx.

Определить координаты центра тяжести плоского сечения, ограниченного осью х, квадратной параболой x = hy2/b2 и прямой линией х = h

Определить статические моменты Sx и Sy сложного поперечного сечения

  Если поперечное сечение не содержит осей симметрии, то случайные оси х, у ставим так, тобы все точки поперечного сечения находились в 1-м квадранте.

Осевые моменты инерции плоских сечений простой формы Осевым моментом инерции плоского сечения относительно некоторой оси называется взятая по всей его площади А сумма произведений элементарных площадок dA на квадраты их расстояний от этой оси.

Ось максимум всегда составляет меньший угол с той из осей (у или х), относительно которой осевой момент инерции имеет большее значение.

  Из подобия треугольников находим (рис.2.2.6):  откуда  следовательно, площадь элементарной площадки dA будет .

Определить статические моменты, осевые моменты инерции, центробежные моменты инерции и оложение главных осей неравнополочного уголка 1208010 относительно осей х, у и относительно центральных осей хс, ус.

Определить расстояние а между элементами пакета, состоящего из трех досок размером , словии равенства главных моментов инерции относительно осей х и у

Осевые моменты инерции плоских составных сечений.

Наносим оси хс, ус, которые проходят через центр тяжести С всего составного поперечного сечения и определяем расстояния между осями хс и хi, а также между осями ус и уi:а1 = у1 – ус = 24,8 – 17,5 = 7,3 см; b1 = х1 – хс = 25 – 27,4 = –2,4 см;

Значение центробежного момента  можно вычислить, используя фор-мулу (2.2.6). Для этого рас-смотрим рис. 2.3.2, в. Разобьем уголок на два прямоугольника с и.

Вычислить главные моменты инерции для составного поперечного сечения, представленного на рис. 2.1.12.

двиг, кручение.