Интегрирование по частям Пример Найти интеграл Криволинейные интегралы первого рода Физические приложения двойных интегралов Вычислить поверхностный интеграл Найти разложение в ряд Фурье функции

Математический анализ Вычислить интеграл

Пример 6. Найти интеграл .

Решение. С помощью формул тригонометрии: , такие подынтегральные выражения приводятся к рациональным выражениям, зависящим от . Получаем:

,

а интеграл приобретает следующий вид:

  .

Применив универсальную тригонометрическую замену

, получим интеграл .

Возвратившись к прежней переменной, имеем:

.

Интегрирование по частям

Пусть u(x) и v(x) являются дифференцируемыми функциями. Дифференциал произведения функций u и v определяется формулой

Проинтегрировав обе части этого выражения, получим
или, переставляя члены,

Это и есть формула интегрирования по частям.

Пример 1 Вычислить интеграл .


Решение.
Используем формулу интегрирования по частям . Пусть . Тогда
     
Следовательно,

     

Пример 2 Проинтегрировать .


Решение.
В соответствии с формулой интегрирования по частям полагаем u = ln x, dv = dx.
Тогда . Получаем

     

Пример 3 Вычислить интеграл .


Решение.
Пусть . Тогда , так что интеграл переписывается в виде
     
Чтобы вычислить новый интеграл, сделаем замену . В этом случае .
В результате последний интеграл становится равным
     
Отсюда находим искомый интеграл:
     

Пример 4 Вычислить интеграл .


Решение.
Используем интегрирование по частям: . Полагаем . Тогда и интеграл записывается в виде
     
Применим формулу интегрирования по частям еще раз. Пусть теперь . Следовательно, . Для первоначального интеграла получаем следующее уравнение:
     
Решая это уравнение относительно неизвестного интеграла, находим
     

Пример 5 Вывести формулу редукции (понижения степени) для .


Решение.
Используя формулу интегрирования по частям , полагаем . Тогда
     
Следовательно,
     
Решим полученное уравнение относительно . Получаем      

Пример 5 С помощью формулы Грина вычислить интеграл , где контур C представляет собой треугольник ABD с вершинами A (a,0), B (a,a), D (0,a).

Несобственные интегралы Пример Определить, при каких значениях k интеграл сходится.

Определить, сходится или расходится несобственный интеграл ?

Вычислить периметр единичной окружности. Решение. Вычислим длину дуги окружности в первом квадранте между x = 0 и x = 1 и затем умножим результат на 4.

Старшие производные функции, заданной неявно, находятся последовательно, в соответствии с определением старших производных. Так, для неявно заданной зависимости у от х  мы получили . Найдём вторую производную: . Дальше можно найти третью и т.д. производные.

3. Действительные числа.

3.1. Аксиомы действительных чисел.

 Множество R={x,y,z,…} действительных чисел - множество мощности континуум, на котором определены две операции (сложение и умножение) и отношение упорядоченности (), удовлетворяющие аксиомам

 I.1. x+y=y+x;

 I.2. (x+y)+z=x+(y+z);

I.3. Существует такой элемент 0ÎR, что 0+х=х для "хÎR;

I.4. Для каждого элемента хÎR существует такой элемент - х, что х+(- х)=0;

II.1. xy=yx;

II.2. (xy)z=x(yz);

II.3. Существует такой элемент 1ÎR, что 1х=х для "хÎR;

II.4. Для каждого элемента х¹0, х ÎR существует такой элемент х-1ÎR, что х х-1=1;

III.1. x(y+z)=xy+xz;

IV.1. Отношение {()L( y £ x)} эквивалентно отношению х=у;

IV.2. Для любых двух элементов хÎR, уÎR или х£у, или у£х;

IV.3. Из  и y£z следует х£z;

IV.4. Из х£у следует х+ z £у+ z для любых х,у, z ÎR;

IV.5. Из 0£ х и 0£ у следует 0£ ху.

Отношение  записывается также в форме у³х. Отношение {()L( x¹y)} записывается в форме х<у.

  V. Аксиома непрерывности: для любых элементов хÎR, уÎR таких, что х < у, существует элемент z ÎR, такой что х< z < у.

 VI. Аксиома Архимеда: для любых элементов хÎR, уÎR таких, что 0<х, 0<у, существует такое натуральное число n, что у£ nх;

 VII. Аксиома о вложенных отрезках: если {[an, bn]} - счётная последовательность отрезков, таких что an£ an+1 и bn+1£ bn при "n, то пересечение этой последовательности непусто, т.е. $ хÎR: хÎ[an, bn] для "n.

Пример 7. Найти интеграл  .

Решение. Разложим подынтегральную функцию на сумму простейших дробей. Чтобы разложить знаменатель на сомножители нужно решить квадратное уравнение . Его корнями являются . Теперь знаменатель может быть представлен следующим образом

.

Тогда наша дробь представима в виде суммы элементарных дробей:

.

Нужно найти неизвестные коэффициенты A,B,C. Для этого приведем дроби к общему знаменателю:

.

Так как дроби между собой равны, а также равны их знаменатели, то и числители также равны. Поэтому у многочленов, стоящих в числителе приравняем коэффициенты при х2,х1,х0 и получим систему трех уравнений с тремя неизвестными:

.

Решив эту систему получим следующие значения A, B и C: .

Значит, наша дробь раскладывается на сумму дробей:

.

Подставляя это разложение в интеграл, получаем:


Решение дифференциальных уравнений с помощью рядов Фурье